Monday, February 18, 2019
Gradient Functions :: Papers
incline Functions In the following coursework, will investigate the inc melody functions using the locution y=axn, where a is a everlasting and n is a number. a n Y=axn 1 1 x 2 1 2x 3 1 3x 4 1 4x 5 1 5x a n Y=axn 1 2 x 2 2 4x 3 2 6x 4 2 8x 5 2 10x a n Y=axn 1 3 3x2 2 3 6x2 3 3 9x2 4 3 12x2 5 3 15x2 a n Y=axn 1 4 4x3 2 4 8x3 3 4 12x3 4 4 16x3 5 4 20x3 I will dapple the graphs of the functions above and I will find their gradient using the formula gradient=increase in y-axis /increase in x-axis. Straight line graphs Straight line graphs are graphs with the equation y=mx+c or y=ax1,where is stand for the gradient and c is the y- intercept. incline calculations 1. y=x graph Gradient of A= increase in y -axis/increase in x-axis = 2/2 =1 Gradient of B= increase in y-axis/increase in x-axis = 2/2 =1 2. y=2x g raph Gradient of D= increase in y-axis/increase in x-axis = 4/2 =2 Gradient of E= increase in y-axis/increase in x-axis = 4/2 =2 Gradient of F= increase in y-axis/increase in x-axis
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment